In IT, we (well, some of us) are obsessed with speed. The speed-cravers seek the fastest hardware, the fastest software, and the fastest network connections. They have been with us since the days of the IBM PC AT, which ran at 6MHz which was faster than the IBM PC (and XT) speed of 4.77MHz.
Now we see speed competition among browsers. First Firefox claims their browser is fastest. Then Google releases a new version of Chrome, and claims that it is the fastest. At some point, Microsoft will claim that their Edge browser is the fastest.
It is one thing to improve performance. When faced with a long-running job, we want the computer to be faster. That makes sense; we get results quicker and we can take actions faster. Sometimes it is reasonable to go to great lengths to improve performance.
I once had a job that compared source files for duplicate code. With 10,000 source files, and the need to compare each file against each other file, there were 1,000,000 comparisons. Each comparison took about a minute, so the total job was projected to run for 1,000,000 minutes -- or about 2 years! I revised the job significantly, using a simpler (and faster) comparison to identify if two files had any common lines of code and then using the more detailed (and longer) comparison on only those pairs with over 1,000 lines of common code.
I once had a job that compared source files for duplicate code. With 10,000 source files, and the need to compare each file against each other file, there were 1,000,000 comparisons. Each comparison took about a minute, so the total job was projected to run for 1,000,000 minutes -- or about 2 years! I revised the job significantly, using a simpler (and faster) comparison to identify if two files had any common lines of code and then using the more detailed (and longer) comparison on only those pairs with over 1,000 lines of common code.
Looking for faster processing in that case made sense.
But it is another thing to look for faster processing by itself.
Consider a word processor. Microsoft Word has been around for decades. (It actually started its life in MS-DOS.) Word was designed for systems with much smaller memory and much slower processors, and it still has some of that design. The code for Word is efficient. It spends most of its time not in processing words but in waiting for the user to type a key or click the mouse. Making the code twice as fast would not improve its performance (much), because the slowness comes from the user.
E-mail is another example. Most of the time for e-mail is, like Word, the computer waiting for the user to type something. When an e-mail is sent, the e-mail is passed from one e-mail server to another until it arrives at the assigned destination. Changing the servers would let the e-mail arrive quicker, but it doesn't help with the composition. The acts of writing and reading the e-mail are based on the human brain and physiology; faster processors won't help.
The pursuit of faster processing without definite benefits is, ironically, a waste of time.
Instead of blindly seeking faster hardware and software, we should think about what we want. We should identify the performance improvements that will benefit us. (For managers, this means lower cost or less time to obtain business results.)
Once we insist on benefits for improved performance, we find a new concept: the idea of "fast enough". When an improvement lets us meet a goal (a goal more specific than "go faster"), we can justify the effort or expense for faster performance. But once we meet that goal, we stop.
This is a useful tool. It allows us to eliminate effort and focus on changes that will help us. If we decide that our internet service is fast enough, then we can look at other things such as database and compilers. If we decide that our systems are fast enough, then we can look at security.
Which is not to say that we should simply declare our systems "fast enough" and ignore them. The decision should be well-considered, especially in the light of our competitors and their capabilities. The conditions that let us rate our systems as "fast enough" today may not hold in the future, so a periodic review is prudent.
We shouldn't ignore opportunities to improve performance. But we shouldn't spend all of our effort for them and avoid other things. We shouldn't pick a solution because it is the fastest. A solution that is "fast enough" is, at the end of the day, fast enough.
No comments:
Post a Comment